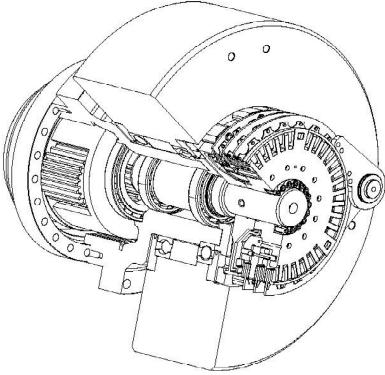


20841 CARATE BRIANZA (MB) ITALY - Via Piemonte, 14 Tel. 0362 / 91 22 20 - Fax 0362 / 99 32 04 sito: www.ompisrl.com - e-mail: info@ompisrl.com

TRASMISSIONE PREMONTATA "OMPIPACK" PREASSEMBLED DRIVE "OMPIPACK"

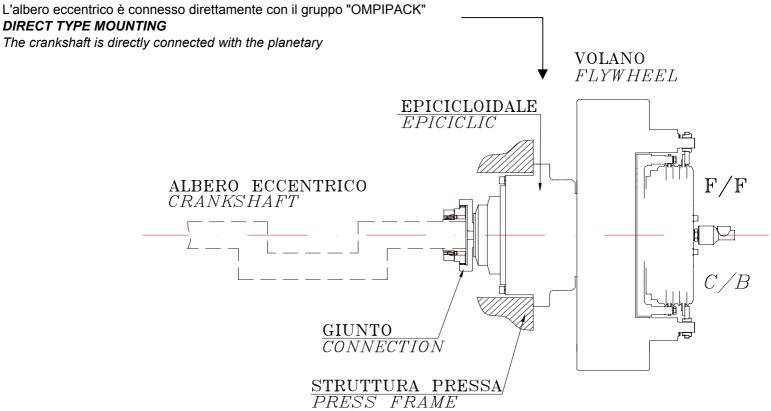
Giunto rotante - frizione freno - volano - epicicloidale per presse meccaniche.

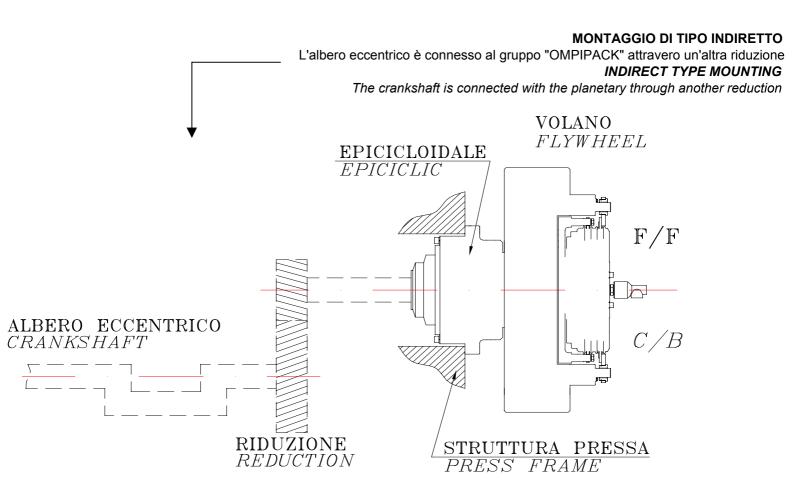

Equipaggiamento con frizione/freno pneumatica o idraulica. Per montaggio diretto sull'eccentrico o su un'ulteriore riduzione.

Rotating union - clutch/brake - flywheel - epiciclic for mechanical presses.

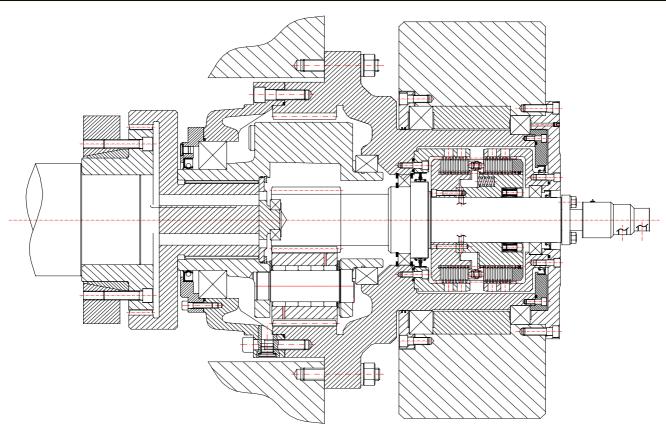
Fitted with dry (pneumatic) or wet (hydraulic) clutch/brake unit. For direct mounting on the crankshaft or on a further reduction.

Caratteristiche:

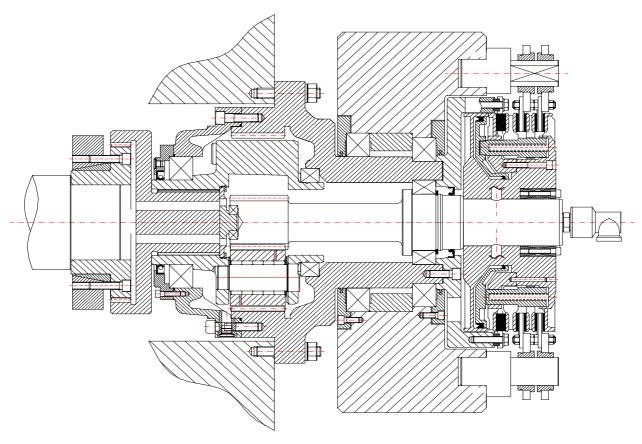

- compattezza dell'assieme
- riduzione degli angoli di frenatura
- aumento delle prestazioni in colpo singolo
- rapidità e facilità di montaggio sulla struttura della pressa
- coppie in uscita fino a 500'000 Nm


Features:

- compactness of the system
- reduction of the braking angle
- increase of the performance in SSPM (single stroke per minute)
- quick and easy mounting on the press frame
- output torques up to 4'425'000 LB-in


TIPI DI APPLICAZIONI "OMPIPACK" "OMPIPACK" ASSEMBLING SYSTEMS

MONTAGGIO DI TIPO DIRETTO



ESEMPI DI TRASMISSIONE "OMPIPACK" "OMPIPACK" DRIVE EXAMPLES

Esempio di trasmissione premontata "Ompipack" con frizione/freno a comando idraulico Example of preassembled drive "Ompipack" with hydraulic clutch/brake unit

Esempio di trasmissione premontata "Ompipack" con frizione/freno a comando pneumatico Example of preassembled drive "Ompipack" with pneumatic clutch/brake unit

QUESTION	IARIO per il completo dime	<u>nsionamento</u>	della trası	<u>missione premo</u>	ontata <u>"OMP</u>	IPACK" (da completare
e ritornare	alla OMPI srl).					_
Data:	Cliente:			Cesoia volante		Pressa meccanica
1) Tonnella	ggio pressa T=	[tons];	2) Corsa r	nassima sella m	nazza S=	[mm]
,	fettiva di lavoro della mazza ngolo effettivo di lavoro della	mazza			W = α =	[mm]
4) Riduzion	e (se prevista) fra l'albero di u	scita del plane	tario e l'alb	ero eccentrico	R ₂ =	
5) Velocità	dell'eccentrico					
,	ninima SPM_{min}= ılla quale bisogna dimensionar	[giri/min] e il volano SPI	,	massima SPM _n	_{nax} = [giri/mi	[giri/min] n]
6.1) a	lasse rotanti e traslanti ridotte albero di uscita del planetario (albero eccentrico, se R_2 =1		>1		J= J=	[Kgm²] [Kgm²]
7.1) a	oni in colpo singolo (SSPM) r ad una velocità eccentrico SPM ad una velocità eccentrico SPM	1 di:	erifica termi [giri/min] [giri/min]	ca f/f) SSPM ric SSPM ric		[colpi/min] [colpi/min]
	uscinetti di sostegno dell'albero n caso di bronzine, il gioco ma		•	inetario:	\square bronzir G =	ne
9) Tipo di ci	nghie di trasmissione puleggia	motore - volar	no:	□trapezioda	li 🗌 pi	atte
10.1) p 10.2) p	mento (%) ammesso sul volan per velocità eccentrico fino a 16 per velocità eccentrico fino a 46 per velocità eccentrico oltre i 46	SPM incluso: SPM incluso:	20%	[%] in	mancanza di t	tale dato assumiamo:
11) Motore o	di comando volano previsto: p	otenza		[kW]		
12) Tipo di fr	rizione/freno richiesta:			pneumatica	idraulio	a
	NNAIRE for the complete de r AMBI corp technical dep). Customer:	esign of the		Shear	<u>Died drive</u> (lo	Mechanical press
1) Press tor	nnage T =	[tons];	2) Max ra	m stroke $S=$	[mm]	or [inches]
3) Effective	e ram working stroke			W =	[mm] or [inches]
or effect	ive crankshaft working angle			α=		
4) Reduction	n (if any) between the planeta	ry outlet shaft a	and the cra	nkshaft	R_2 =	
	aft speed minimum SPM _{min} = for sizing the flywheel SPM _{fyw}	[rpm] =	5.2)	maximum SPM [rpm]	_{max} =	[rpm]
6.1) t	and translating inertias reduc he planetary outlet shaft (inclu			J=	[Kgm²]; or	[LB-ft²]
6.2) t	he crankshaft, if R_2 =1			J=	[Kgm ²]; or	[LB-ft ²]
7.1) a	troke per minute (SSPM) requ at the crankshaft speed SPM o at the crankshaft speed SPM o	f:	ermal ched [rpm] [rpm]	king of c/b) SSPM req SSPM req		
	shaft connected to the planeta n case of bronze bushings, the			d: \Box bronze $G = \Box$	bushings [mm]; or	ball or roll bearing [inches]
9) Types of	belts connecting the motor pu	lley with the fly	wheel:	□V shaped	d I fl	at
10.1) for 10.2) for	slowdown speed (%) of the fly or crankshaft speed up to 16 S or crankshaft speed up to 40 s or crankshaft speed beyond40	SPM included: SPM included:	20%	[%]	if it is n	ot given, we assume:
11) Flywhee	I drive speed motor selected:	power		[kW]		
12) Required	d type of clutch/brake unit:			air actuated (dr	y) 🗆 oil i	actuated (wet)